Based on new near-infrared spectroscopic data from the instrument Espectrógrafo Multiobjeto Infra-Rojo (EMIR) on the 10.4 m Gran Telescopio Canarias, we report the presence of an ionized and warm molecular outflow in the luminous type-2 quasar J150904.22+043441.8 (z = 0.1118). The ionized outflow is faster than its molecular counterpart, although the outflow sizes that we derive for them are consistent within the errors (1.34 ± 0.18 and 1.46 ± 0.20 kpc, respectively). We use these radii, the broad emission-line luminosities and in the case of the ionized outflow, the density calculated from the trans-auroral [O ii] and [S ii] lines, to derive mass outflow rates and kinetic coupling efficiencies. While the ionized and warm molecular outflows represent a small fraction of the AGN power (≤0.033 and 0.0001 per cent of Lbol, respectively), the total molecular outflow, whose mass is estimated from an assumed warm-to-cold gas mass ratio of 6 × 10-5, has a kinetic coupling efficiency of ∼1.7 per cent Lbol. Despite the large uncertainty, this molecular outflow represents a significant fraction ofLbol and it could potentially have a significant impact on the host galaxy. In addition, the quasar spectrum reveals bright and patchy narrow Paα emission extending out to 4 arcsec (8 kpc) south-east and north-west from the active nucleus.
CITATION STYLE
Ramos Almeida, C., Acosta-Pulido, J. A., Tadhunter, C. N., González-Fernández, C., Cicone, C., & Fernández-Torreiro, M. (2019). A near-infrared study of the multiphase outflow in the type-2 quasar J1509+0434. Monthly Notices of the Royal Astronomical Society: Letters, 487(1), L18–L23. https://doi.org/10.1093/mnrasl/slz072
Mendeley helps you to discover research relevant for your work.