The next generation cognitive security operations center: Adaptive analytic lambda architecture for efficient defense against adversarial attacks

28Citations
Citations of this article
127Readers
Mendeley users who have this article in their library.

Abstract

A Security Operations Center (SOC) is a central technical level unit responsible for monitoring, analyzing, assessing, and defending an organization’s security posture on an ongoing basis. The SOC staff works closely with incident response teams, security analysts, network engineers and organization managers using sophisticated data processing technologies such as security analytics, threat intelligence, and asset criticality to ensure security issues are detected, analyzed and finally addressed quickly. Those techniques are part of a reactive security strategy because they rely on the human factor, experience and the judgment of security experts, using supplementary technology to evaluate the risk impact and minimize the attack surface. This study suggests an active security strategy that adopts a vigorous method including ingenuity, data analysis, processing and decision-making support to face various cyber hazards. Specifically, the paper introduces a novel intelligence driven cognitive computing SOC that is based exclusively on progressive fully automatic procedures. The proposed λ-Architecture Network Flow Forensics Framework (λ-NF3) is an efficient cybersecurity defense framework against adversarial attacks. It implements the Lambda machine learning architecture that can analyze a mixture of batch and streaming data, using two accurate novel computational intelligence algorithms. Specifically, it uses an Extreme Learning Machine neural network with Gaussian Radial Basis Function kernel (ELM/GRBFk) for the batch data analysis and a Self-Adjusting Memory k-Nearest Neighbors classifier (SAM/k-NN) to examine patterns from real-time streams. It is a forensics tool for big data that can enhance the automate defense strategies of SOCs to effectively respond to the threats their environments face.

Cite

CITATION STYLE

APA

Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S. L., & Iliadis, L. (2019). The next generation cognitive security operations center: Adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data and Cognitive Computing, 3(1), 1–21. https://doi.org/10.3390/bdcc3010006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free