This paper presents a novel position-based routing protocol for vehicular ad hoc networks (VANETs) to enhance traffic safety and traffic organization and facilitate driving through a smart transportation system. The protocol is referred to as the traffic flow-oriented routing (TFOR) protocol for VANETs. It considers a real-time urban scenario with multi-lane and bi-directional roads. It chooses junction optimally considering vehicular traffic flows to accomplish robust routing paths and thereby forwarding the data packets. The new junction selection mechanism and routing between the junctions is based on two-hop neighbor information, which increases packet-delivery ratio and decreases end-to-end delay. We designed, implemented, and compared TFOR against existing routing protocols of VANETs (greedy-perimeter stateless routing (GPSR), geographic source routing (GSR), and enhanced greedy traffic-aware routing (E-GyTAR)). Simulation outcomes in urban scenarios show that TFOR minimizes average end-to-end delay and routing overhead by on average 15.3% and 19.5%, respectively, compared to GPSR. It reduces routing overhead up to 17% compared to GSR. TFOR maximizes packet-delivery ratio on an average of 17.5%, 10.7%, and 7.2% compared to GPSR, GSR, and E-GyTAR, respectively.
CITATION STYLE
Abbasi, I. A., Nazir, B., Abbasi, A., Bilal, S. M., & Madani, S. A. (2014). A traffic flow-oriented routing protocol for VANETs. Eurasip Journal on Wireless Communications and Networking, 2014(1). https://doi.org/10.1186/1687-1499-2014-121
Mendeley helps you to discover research relevant for your work.