HB-EGF promotes epithelial cell migration in eyelid development

91Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and ERBB4. Here, we show that HB-EGF-EGFR signaling is involved in eyelid development. HB-EGF expression is restricted to the tip of the leading edge of the migrating epithelium during eyelid closure in late gestation mouse embryos. Both HB-EGF null (HBdel/del) and secretion-deficient (HBuc/uc) mutant embryos exhibited delayed eyelid closure, owing to slower leading edge extension and reduced actin bundle formation in migrating epithelial cells. No changes in cell proliferation were observed in these embryos. In addition, activation of EGFR and ERK was decreased in HBdel/del eyelids. Crosses between HBdel/del mice and waved 2 mice, a hypomorphic EGFR mutant strain, indicate that HB-EGF and EGFR interact genetically in eyelid closure. Together with our data showing that embryos treated with an EGFR-specific kinase inhibitor phenocopy HBdel/del embryos, these data indicate that EGFR mediates HB-EGF-dependent eyelid closure. Finally, analysis of eyelid closure in TGFα-null mice and in HB-EGF and TGFα double null mice revealed that HB-EGF and TGFα contribute equally to and function synergistically in this process. These results indicate that soluble HB-EGF secreted from the tip of the leading edge activates the EGFR and ERK pathway, and that synergy with TGFα is required for leading edge extension in epithelial sheet migration during eyelid closure.

Cite

CITATION STYLE

APA

Mine, N., Iwamoto, R., & Mekada, E. (2005). HB-EGF promotes epithelial cell migration in eyelid development. Development, 132(19), 4317–4326. https://doi.org/10.1242/dev.02030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free