Future safety applications require the timely delivery of messages between vehicles. The 802.11p has been standardized as the standard Medium Access Control (MAC) protocol for vehicular communication. The 802.11p uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) as MAC. CSMA/CA induces unbounded channel access delay. As a result, it induces high collision. To reduce collision, distributed MAC is required for channel allocation. Many existing approaches have adopted Time Division Multiple Access (TDMA) based MAC design for channel allocation. However, these models are not efficient at utilizing bandwidth. Cognitive radio technique is been adopted by various existing approach for channel allocation in shared channel network to maximize system throughput. However, it induces MAC overhead, and channel allocation on a shared channel network is considered to be an NP-hard problem. This work addresses the above issues. Here we present distributed MAC design PECA (Performance Enriching Channel Allocation) for channel allocation in a shared channel network. The PECA model maximizes the system throughput and reduces the collision, which is experimentally proven. Experiments are conducted to evaluate the performance in terms of throughput, collision and successful packet transmission considering a highly congested vehicular ad-hoc network. Experiments are carried out to show the adaptiveness of proposed MAC design considering different environments such City, Highway and Rural (CHR).
CITATION STYLE
Al-Absi, M. A., Al-Absi, A. A., & Lee, H. J. (2019). Performance enriching channel allocation algorithm for vehicle-to-vehicle city, highway and rural network. Sensors (Switzerland), 19(15). https://doi.org/10.3390/s19153283
Mendeley helps you to discover research relevant for your work.