Classification tree analysis for an intersectionality-informed identification of population groups with non-daily vegetable intake

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Daily vegetable intake is considered an important behavioural health resource associated with improved immune function and lower incidence of non-communicable disease. Analyses of population-based data show that being female and having a high educational status is most strongly associated with increased vegetable intake. In contrast, men and individuals with a low educational status seem to be most affected by non-daily vegetable intake (non-DVI). From an intersectionality perspective, health inequalities are seen as a consequence of an unequal balance of power such as persisting gender inequality. Unravelling intersections of socially driven aspects underlying inequalities might be achieved by not relying exclusively on the male/female binary, but by considering different facets of gender roles as well. This study aims to analyse possible interactions of sex/gender or sex/gender related aspects with a variety of different socio-cultural, socio-demographic and socio-economic variables with regard to non-DVI as the health-related outcome. Method: Comparative classification tree analyses with classification and regression tree (CART) and conditional inference tree (CIT) as quantitative, non-parametric, exploratory methods for the detection of subgroups with high prevalence of non-DVI were performed. Complete-case analyses (n = 19,512) were based on cross-sectional data from a National Health Telephone Interview Survey conducted in Germany. Results: The CART-algorithm constructed overall smaller trees when compared to CIT, but the subgroups detected by CART were also detected by CIT. The most strongly differentiating factor for non-DVI, when not considering any further sex/gender related aspects, was the male/female binary with a non-DVI prevalence of 61.7% in men and 42.7% in women. However, the inclusion of further sex/gender related aspects revealed a more heterogenous distribution of non-DVI across the sample, bringing gendered differences in main earner status and being a blue-collar worker to the foreground. In blue-collar workers who do not live with a partner on whom they can rely on financially, the non-DVI prevalence was 69.6% in men and 57.4% in women respectively. Conclusions: Public health monitoring and reporting with an intersectionality-informed and gender-equitable perspective might benefit from an integration of further sex/gender related aspects into quantitative analyses in order to detect population subgroups most affected by non-DVI.

Cite

CITATION STYLE

APA

Mena, E., Bolte, G., Holmberg, C., Jaehn, P., Merz, S., Rommel, A., … Mena, E. (2021). Classification tree analysis for an intersectionality-informed identification of population groups with non-daily vegetable intake. BMC Public Health, 21(1). https://doi.org/10.1186/s12889-021-12043-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free