We have proposed a five-layer-scheme to investigate the volume transport through the South China Sea (SCS) based on the updated Simple Ocean Data Assimilation (SODA2.2.4) product. By demonstrating horizontal transport in each layer, we have revealed different formation mechanisms for the meridional overturning circulation (MOC) in winter and summer in the SCS. Our analysis suggests three meridional circulation systems in the SCS: (1) the seasonal monsoon-driven circulation in the surface layer, i.e., southward circulation in winter and northward in summer, (2) the compensatory transport-induced seasonal intermediate MOC in the central SCS, and (3) the persistent deep MOC in the southern SCS all year round. By examining vertical velocity distribution, we have identified that the major overturning process of the intermediate MOC is located along the continental slope east and southeast of Vietnam, while the major overturning process of the deep MOC is located along the continental slope northwest of Borneo. The downwelling in the intermediate MOC in winter and upwelling in the deep MOC all year round bring different water masses to the intermediate and subintermediate layers to be mixed in the SCS. We found no evidence to suggest that the strength and extent of the MOC south of 18°N are related to inter-ocean volume transport. The surface layer transport in the Luzon Strait has been decreasing since the 1960s. However, the causes of the meridionally staggered and interdecadal alternating acceleration/slowdown of the meridional stream function difference are unknown.
CITATION STYLE
Zhu, Y., Fang, G., Wei, Z., Wang, Y., Teng, F., & Qu, T. (2016). Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. Journal of Geophysical Research: Oceans, 121(5), 3090–3105. https://doi.org/10.1002/2015JC011443
Mendeley helps you to discover research relevant for your work.