Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope

  • Erikson A
  • Örtegren J
  • Hompland T
  • et al.
81Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

Characteristic changes in the organization of fibrillar collagen can potentially serve as an early diagnostic marker in various pathological processes. Tissue types containing collagen I can be probed by pulsed high-intensity laser radiation, thereby generating second harmonic light that provides information about the composition and structure at a microscopic level. A technique was developed to determine the essential second harmonic generation (SHG) parameters in a laser scanning microscope setup. A rat-tail tendon frozen section was rotated in the xy-plane with the pulsed laser light propagating along the z-axis. By analyzing the generated second harmonic light in the forward direction with parallel and crossed polarizer relative to the polarization of the excitation laser beam, the second-order nonlinear optical susceptibilities of the collagen fiber were determined. Systematic variations in SHG response between ordered and less ordered structures were recorded and evaluated. A 500(m-thick z-cut lithiumniobate (LiNbO3) was used as reference. The method was applied on frozen sections of malignant melanoma and normal skin tissue. Significant differences were found in the values of d22, indicating that this parameter has a potential role in differentiating between normal and pathological processes. © 2007 Society of Photo-Optical Instrumentation Engineers.

Cite

CITATION STYLE

APA

Erikson, A., Örtegren, J., Hompland, T., de Lange Davies, C., & Lindgren, M. (2007). Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. Journal of Biomedical Optics, 12(4), 044002. https://doi.org/10.1117/1.2772311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free