Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: Control of Fe-based nanoparticle distribution

10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

A series of Fe-NC catalysts were synthesized by pyrolyzing an Fe complex and wheat flour at 500 °C. All of them were characterized and applied in the catalytic transfer hydrogenation of nitroarenes with formic acid. It was found that the catalytic activity was significantly affected by the size and distribution of Fe-based nanoparticles (NPs), which could be easily regulated by altering the Fe source. Meanwhile, more basic nitrogen sites were preserved on the catalyst so that the reaction ran smoothly without base additives. Among all catalysts, Fe-NC-FeCl2 exhibited the best catalytic performance due to smaller Fe3O4 NPs and greater N doping. Moreover, it showed excellent applicability for diverse nitroarenes. Obviously, this work demonstrates the importance of the metallic NPs' size and distribution, providing a new insight into the design of M-NC catalysts. The catalyst is economical and eco-friendly, and shows potential application value in industry.

Cite

CITATION STYLE

APA

Liu, L., Wang, B., Gao, R., Zhang, D., Xu, W., Chen, L., … Li, Y. (2020). Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: Control of Fe-based nanoparticle distribution. RSC Advances, 10(18), 10689–10694. https://doi.org/10.1039/d0ra01356k

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free