Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins – almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly.
CITATION STYLE
Callahan, A. J., Gandhesiri, S., Travaline, T. L., Reja, R. M., Lozano Salazar, L., Hanna, S., … Pentelute, B. L. (2024). Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-45634-z
Mendeley helps you to discover research relevant for your work.