Cooperativity-Dependent Folding of Single-Stranded DNA

16Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The folding of biological macromolecules is a fundamental process of which we lack a full comprehension. Mostly studied in proteins and RNA, single-stranded DNA (ssDNA) also folds, at physiological salt conditions, by forming nonspecific secondary structures that are difficult to characterize with biophysical techniques. Here, we present a helix-coil model for secondary-structure formation, where ssDNA bases are organized in two different types of domains (compact and free). The model contains two parameters: the energy gain per base in a compact domain, ϵ, and the cooperativity related to the interfacial energy between different domains, γ. We test the ability of the model to quantify the formation of secondary structure in ssDNA molecules mechanically stretched with optical tweezers. The model reproduces the experimental force-extension curves in ssDNA of different molecular lengths and varying sodium and magnesium concentrations. Salt-correction effects for the energy of compact domains and the interfacial energy are found to be compatible with those of DNA hybridization. The model also predicts the folding free energy and the average size of domains at zero force, finding good agreement with secondary-structure predictions by mfold. We envision the model could be further extended to investigate native folding in RNA and proteins.

References Powered by Scopus

Mfold web server for nucleic acid folding and hybridization prediction

11266Citations
N/AReaders
Get full text

Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules

2514Citations
N/AReaders
Get full text

A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics

2419Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Stem-loop formation drives RNA folding in mechanical unzipping experiments

20Citations
N/AReaders
Get full text

Displacement and dissociation of oligonucleotides during DNA hairpin closure under strain

10Citations
N/AReaders
Get full text

Sugar-pucker force-induced transition in single-stranded DNA

8Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Viader-Godoy, X., Pulido, C. R., Ibarra, B., Manosas, M., & Ritort, F. (2021). Cooperativity-Dependent Folding of Single-Stranded DNA. Physical Review X, 11(3). https://doi.org/10.1103/PhysRevX.11.031037

Readers over time

‘21‘22‘23‘2405101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 10

83%

Professor / Associate Prof. 1

8%

Researcher 1

8%

Readers' Discipline

Tooltip

Physics and Astronomy 7

58%

Biochemistry, Genetics and Molecular Bi... 3

25%

Pharmacology, Toxicology and Pharmaceut... 1

8%

Engineering 1

8%

Save time finding and organizing research with Mendeley

Sign up for free
0