All-optical control of spin in a 2D van der Waals magnet

40Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Two-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets. Here we demonstrate laser-induced magnetic domain formation and all-optical switching in the recently discovered 2D van der Waals ferromagnet CrI3. While the magnetism of bare CrI3 layers can be manipulated with single laser pulses through thermal demagnetization processes, all-optical switching is achieved in nanostructures that combine ultrathin CrI3 with a monolayer of WSe2. The out-of-plane magnetization is switched with multiple femtosecond pulses of either circular or linear polarization, while single pulses result in less reproducible and partial switching. Our results imply that spin-dependent interfacial charge transfer between the WSe2 and CrI3 is the underpinning mechanism for the switching, paving the way towards ultrafast optical control of 2D van der Waals magnets for future photomagnetic recording and device technology.

Cite

CITATION STYLE

APA

Da̧browski, M., Guo, S., Strungaru, M., Keatley, P. S., Withers, F., Santos, E. J. G., & Hicken, R. J. (2022). All-optical control of spin in a 2D van der Waals magnet. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33343-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free