Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke

14Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment. Methods: The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as 'relaxed wrist' and 'maintaining 20% maximum wrist flexion', respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio. Results: Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses compared to the passive condition, whereas unimpaired and chronic stroke participants without sensory impairment did not show this reduction. Conclusions: Robotic continuous joint manipulation allows studying somatosensory cortical evoked responses during the execution of meaningful upper limb control tasks. Using such an approach it is possible to quantitatively assess the integrity of sensory pathways; in the context of movement control this provides additional information required to develop more effective neurorehabilitation therapies.

Cite

CITATION STYLE

APA

Vlaar, M. P., Solis-Escalante, T., Dewald, J. P. A., Van Wegen, E. E. H., Schouten, A. C., Kwakkel, G., & Van Der Helm, F. C. T. (2017). Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke. Journal of NeuroEngineering and Rehabilitation, 14(1). https://doi.org/10.1186/s12984-017-0240-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free