Purine metabolism in myeloid precursor cells during maturation. Studies with the HL-60 cell line

102Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In studies with the human promyelocytic leukemia cell line HL-60, we defined changes in intermediary purine metabolism that appear to contribute to the regulation of terminal maturation in myeloid cells. When HL-60 cells were exposed to compounds that induce maturation, consistent alterations in purine metabolism were found to occur within 24 h of culture. Perturbation of guanosine nucleotide synthesis and decreases of up to 50% in intracellular guanylate pool sizes were associated with the induced maturation of these cells in response to diverse inducing agents. While immature HL-60 cells were observed to synthesize purine nucleotides by both de nova and salvage pathways, the activity of both pathways decreased in cells induced to mature, although the relative contribution of purine salvage increased. Moreover, incorporation of the salvage pathway precursor, [14C]hypoxanthine from the intermediate, inosine monophosphate (IMP), into guanylates was reduced by ~65% in induced HL-60 cells, reflecting decreased activity of both hypoxanthine phosphoribosyltransferase and IMP dehydrogenase. When various inhibitors of IMP dehydrogenase (mycophenolic acid, 3-deazagunaosine, and 2-β-D-ribofuranosylthiazole-4-carboxamide) were evaluated for their effects upon HL-60 cells, each agent was found to induce the cells to mature morphologically and functionally. Like other inducers, these agents decreased HL-60 cell proliferation and caused the cells to acquire an ability to phagocytose oposonized yeast and reduce nitroblue tetrazolium. Each agent reduced intracellular guanosine nucleotide pool sizes and induced HL-60 cell maturation at micromolar concentrations. These observations suggest that the size of intracellular guanosine nucleotide pools, the biosynthesis of guanosine nucleotides, and the activity of IMP dehydrogenase may be central to the regulation of terminal maturation in myeloid cells.

Cite

CITATION STYLE

APA

Lucas, D. L., Webster, H. K., & Wright, D. G. (1983). Purine metabolism in myeloid precursor cells during maturation. Studies with the HL-60 cell line. Journal of Clinical Investigation, 72(6), 1889–1900. https://doi.org/10.1172/JCI111152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free