Carbohydrate hydrolyzing α-glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α-glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro-αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase-glucoamylase (MGAM) and sucrase–isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro-αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro-αG1 in complex with the antidiabetic α-glucosidase inhibitors voglibose, miglitol, and acarbose and supporting binding data. The in vitro binding of these antidiabetic drugs to Ro-αG1 suggests the potential for unintended in vivo crossreaction of the α-glucosidase inhibitors to bacterial α-glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug-bound enzyme structures could benefit further antidiabetic drug development.
CITATION STYLE
Tan, K., Tesar, C., Wilton, R., Jedrzejczak, R. P., & Joachimiak, A. (2018). Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase. Protein Science, 27(8), 1498–1508. https://doi.org/10.1002/pro.3444
Mendeley helps you to discover research relevant for your work.