Quantitative analysis of resting membrane electrogenesis in insect (diptera) skeletal muscle. I. Intracellular K+, Na+ and Cl- activities, measured using liquid ion-exchanger and neutral ion-carrier microelectrodes.

10Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Electrophysiological properties of skeletal body-wall muscles of prepupal Calliphora erythrocephala were investigated using double-barrelled intracellular ion-sensitive microelectrodes. The most realistic estimate of the intracellular K+ activity, obtained using K+-sensitive microelectrodes based on a neutral carrier, was 115 mmoll-1. The K+ equilibrium potential was consistently more negative than the prevailing resting potential, the average difference being -15 mV. The intracellular Na+ activity and the Na+ equilibrium potential were 7 mmoll-1 and +46 mV on average, respectively. The mean value of the intracellular Cl- activity was 40 mmoll-1, and this was apparently higher than that required for passive distribution of Cl-. However, when reversibly exposed to a Ringer containing no Cl-, cells could rapidly exchange most of their intracellular Cl-, although the resting membrane potentials were only transiently affected. It is concluded that an anionic interferent exists inside muscles, that this artefactually elevates the measured intracellular Cl- activities, and that Cl- makes no contribution to resting membrane electrogenesis.

Cite

CITATION STYLE

APA

Dawson, J., & Djamgoz, M. B. (1988). Quantitative analysis of resting membrane electrogenesis in insect (diptera) skeletal muscle. I. Intracellular K+, Na+ and Cl- activities, measured using liquid ion-exchanger and neutral ion-carrier microelectrodes. The Journal of Experimental Biology, 136, 417–432. https://doi.org/10.1242/jeb.136.1.417

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free