Internal tandem duplication (ITD) and activating point mutations, mainly at aspartic acid 835 in the tyrosine kinase domain (TKD), are frequently identified in the Fms-related tyrosine kinase 3 (FLT3) receptor gene in acute myeloid leukemia. The ITD in FLT3 (FLT3-ITD) confers resistance to several chemotherapeutic drugs; however, the relative effects of FLT3-ITD and FLT3-TKD mutations on the efficacy of these drugs have not been reported. In the present study, ITD or TKD mutant forms of FLT3 in Ba/F3 cells were expressed, as in the absence of interleukin-3 (IL-3) the growth of these cells is completely dependent on FLT3 oncogenic signals. As a result, the 50% effective dose for daunorubicin was significantly higher in both Ba/F3-FLT3-ITD clones, and also in one of the two Ba/F3-FLT3-TKD clones when cells were cultured without IL-3. This phenomenon was not observed for cytarabine in either Ba/F3-FLT3-ITD or Ba/F3-FLT3-TKD cells. Collectively, these results indicate that ITD and TKD mutations in FLT3 may confer daunorubicin resistance in Ba/F3 cells.
CITATION STYLE
Takahashi, S., & Shirahama, K. (2016). Internal tandem duplication and tyrosine kinase domain mutations in FLT3 alter the response to daunorubicin in Ba/F3 cells. Biomedical Reports, 4(1), 83–86. https://doi.org/10.3892/br.2015.541
Mendeley helps you to discover research relevant for your work.