Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes

10Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Lithium-ion batteries are used in various extreme environments, such as cold regions and outer space; thus, improvements in energy density, safety, and cycle life in these environments are urgently required. We investigated changes in the charge and discharge properties of Si-based electrodes in ionic liquid electrolytes with decreasing temperature and the cycle life at low temperature. The reversible capacity at low temperature was determined by the properties of the surface film on the electrodes and/or the ionic conductivity of the electrolytes. The electrode coated with a surface film formed at a low temperature exhibited insufficient capacity. In contrast, a Si-only electrode precoated with the surface film at room temperature exhibited a cycle life at low temperatures in ionic liquid electrolytes longer than that in conventional organic liquid electrolytes. Doping phosphorus into Si led to improved cycling performance, and its impact was more noticeable at lower temperatures.

Cite

CITATION STYLE

APA

Domi, Y., Usui, H., Hirosawa, T., Sugimoto, K., Nakano, T., Ando, A., & Sakaguchi, H. (2022). Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes. ACS Omega, 7(18), 15846–15853. https://doi.org/10.1021/acsomega.2c00947

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free