This paper describes a semi-supervised multichannel speech enhancement method that uses clean speech data for prior training. Although multichannel nonnegative matrix factorization (MNMF) and its constrained variant called independent low-rank matrix analysis (ILRMA) have successfully been used for unsupervised speech enhancement, the low-rank assumption on the power spectral densities (PSDs) of all sources (speech and noise) does not hold in reality. To solve this problem, we replace a low-rank speech model with a deep generative speech model, i.e., formulate a probabilistic model of noisy speech by integrating a deep speech model, a low-rank noise model, and a full-rank or rank-1 model of spatial characteristics of speech and noise. The deep speech model is trained from clean speech data in an unsupervised auto-encoding variational Bayesian manner. Given multichannel noisy speech spectra, the full-rank or rank-1 spatial covariance matrices and PSDs of speech and noise are estimated in an unsupervised maximum-likelihood manner. Experimental results showed that the full-rank version of the proposed method was significantly better than MNMF, ILRMA, and the rank-1 version. We confirmed that the initialization-sensitivity and local-optimum problems of MNMF with many spatial parameters can be solved by incorporating the precise speech model.
CITATION STYLE
Sekiguchi, K., Bando, Y., Nugraha, A. A., Yoshii, K., & Kawahara, T. (2019). Semi-Supervised Multichannel Speech Enhancement with a Deep Speech Prior. IEEE/ACM Transactions on Audio Speech and Language Processing, 27(12), 2197–2212. https://doi.org/10.1109/TASLP.2019.2944348
Mendeley helps you to discover research relevant for your work.