A Structure-Aware Convolutional Neural Network for Automatic Diagnosis of Fungal Keratitis with In Vivo Confocal Microscopy Images

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fungal keratitis (FK) is a common and severe corneal disease, which is widely spread in tropical and subtropical areas. Early diagnosis and treatment are vital for patients, with confocal microscopy cornea imaging being one of the most effective methods for the diagnosis of FK. However, most cases are currently diagnosed by the subjective judgment of ophthalmologists, which is time-consuming and heavily depends on the experience of the ophthalmologists. In this paper, we introduce a novel structure-aware automatic diagnosis algorithm based on deep convolutional neural networks for the accurate diagnosis of FK. Specifically, a two-stream convolutional network is deployed, combining GoogLeNet and VGGNet, which are two commonly used networks in computer vision architectures. The main stream is used for feature extraction of the input image, while the auxiliary stream is used for feature discrimination and enhancement of the hyphae structure. Then, the features are combined by concatenating the channel dimension to obtain the final output, i.e., normal or abnormal. The results showed that the proposed method achieved accuracy, sensitivity, and specificity of 97.73%, 97.02%, and 98.54%, respectively. These results suggest that the proposed neural network could be a promising computer-aided FK diagnosis solution.

Cite

CITATION STYLE

APA

Liang, S., Zhong, J., Zeng, H., Zhong, P., Li, S., Liu, H., & Yuan, J. (2023). A Structure-Aware Convolutional Neural Network for Automatic Diagnosis of Fungal Keratitis with In Vivo Confocal Microscopy Images. Journal of Digital Imaging, 36(4), 1624–1632. https://doi.org/10.1007/s10278-021-00549-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free