Effect of Na+ flow on Cd2+ block of tetrodotoxin-resistant Na+ channels

16Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Tetrodotoxin-resistant (TTX-R) Na+ channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na+ channels. On the other hand, TTX-R channels are much more susceptible to external Cd2+ block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter "DEKA" ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd2+. In this study we demonstrate that the binding affinity of Cd2+ to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na+ current flow. In the presence of inward Na+ current, the apparent dissociation constant of Cd2+ (∼200 μM) is ∼9 times smaller than that in the presence of outward Na+ current. The Na+ flow-dependent binding affinity change of Cd2+ block is true no matter whether the direction of Na+ current is secured by asymmetrical chemical gradient (e.g., 150 mM Na+ vs. 150 mM Cs+ on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na+ on both sides of the membrane, -20 mV vs. 20 mV). These findings suggest that Cd2+ is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na+ ions coexist with the blocking Cd2+ ion in this pore region in the presence of 150 mM ambient Na+. Thus, the selectivity filter of the TTX-R Na+ channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca2+ and K+channels.

Cite

CITATION STYLE

APA

Kuo, C. C., Lin, T. J., & Hsieh, C. P. (2002). Effect of Na+ flow on Cd2+ block of tetrodotoxin-resistant Na+ channels. Journal of General Physiology, 120(2), 159–172. https://doi.org/10.1085/jgp.20018536

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free