β-Adrenergic receptors critically modulate long-lasting synaptic plasticity and long-term memory in the mammalian hippocampus. Persistent long-term potentiation of synaptic strength requires protein synthesis and has been correlated with some forms of hippocampal long-term memory. However, the intracellular processes that initiate protein synthesis downstream of the β-adrenergic receptor are unidentified. Here we report that activation of β-adrenergic receptors recruits ERK and mammalian target of rapamycin signaling to facilitate longterm potentiation maintenance at the level of translation initiation. Treatment of mouse hippocampal slices with a β-adrenergic receptor agonist results in activation of eukaryotic initiation factor 4E and the eukaryotic initiation factor 4E kinase Mnk1, along with inhibition of the translation repressor 4E-BP. This coordinated activation of translation machinery requires concomitant ERK and mammalian target of rapamycin signaling. Taken together, our data identify distinct signaling pathways that converge to regulate β-adrenergic receptor-dependent protein synthesis during long-term synaptic potentiation in the hippocampus. We suggest that β-adrenergic receptors play a crucial role in gating the induction of long-lasting synaptic plasticity at the level of translation initiation, a mechanism that may underlie the ability of these receptors to influence the formation of long-lasting memories. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Gelinas, J. N., Banko, J. L., Hou, L., Sonenberg, N., Weeber, E. J., Klann, E., & Nguyen, P. V. (2007). ERK and mTOR signaling couple β-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. Journal of Biological Chemistry, 282(37), 27527–27535. https://doi.org/10.1074/jbc.M701077200
Mendeley helps you to discover research relevant for your work.