Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz [J. Math. Phys. 60(9), 092201 (2019)]. We define a notion of quantum Solovay randomness, which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-Löf absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. A quantum analog of the law of large numbers is shown to hold for quantum Schnorr random states.
CITATION STYLE
Bhojraj, T. (2021). Quantum algorithmic randomness. Journal of Mathematical Physics, 62(2). https://doi.org/10.1063/5.0003351
Mendeley helps you to discover research relevant for your work.