Stromal Cell-Derived Factor-1 Signaling via the CXCR4-TCR Heterodimer Requires Phospholipase C-β3 and Phospholipase C-γ1 for Distinct Cellular Responses

  • Kremer K
  • Clift I
  • Miamen A
  • et al.
36Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

The CXCR4 chemokine receptor is a G protein-coupled receptor that signals in T lymphocytes by forming a heterodimer with the TCR. CXCR4 and TCR functions are consequently highly cross regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAPK and downstream AP-1–dependent cytokine transcription in response to stromal cell-derived factor-1 (SDF-1), the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate G protein-coupled receptor-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. In this study, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular calcium ion concentrations, whereas PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1–mediated migration via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors to distinctly regulate migration versus other signaling functions.

Cite

CITATION STYLE

APA

Kremer, K. N., Clift, I. C., Miamen, A. G., Bamidele, A. O., Qian, N.-X., Humphreys, T. D., & Hedin, K. E. (2011). Stromal Cell-Derived Factor-1 Signaling via the CXCR4-TCR Heterodimer Requires Phospholipase C-β3 and Phospholipase C-γ1 for Distinct Cellular Responses. The Journal of Immunology, 187(3), 1440–1447. https://doi.org/10.4049/jimmunol.1100820

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free