Lectins are the oligomeric sugar-specific glycoprotein of nonimmune origin, are involved in the multiple biological recognition process, and have the capacity to perform a wide variety of physiological functions including antifungal, antiviral, antitumor, and cell agglutination. The main objective of the current study was to prepare lectin protein-loaded chitosan-TPP nanoparticles via ionic gelation methods with different CS/TPP ratios and to investigate anticancer potential against HepG2 cells. The best ratio showed the mean particle size (298:10 ± 1:9 nm, 21:05 ± 0:95 mv) with optimal encapsulation efficiencies of 52:435 ± 0:09%. The cytotoxicity was evaluated against HepG2 cells, and IC50 values obtained were 265 μg/ml for lectin protein and 105 μg/ml for lectin-loaded chitosan-TPP nanoparticles, respectively. The mRNA expression of proliferation markers like GPC3 was significantly decreased in hepatocellular carcinoma cells (HepG2) during lectin protein-loaded chitosan-TPP nanoparticle treatment. Apoptotic genes that indicating a marked increase in expression are Caspase 3, p53, and Bax, while Bcl2 and AFP showed a downregulation of expression after treatment of HepG2 cells with lectin-loaded chitosan-TPP nanoparticles. The preliminary findings of our study highlighted that lectin protein-loaded chitosan-TPP nanoparticles could be a promising anticancer agent.
CITATION STYLE
Yasin, U., Bilal, M., Bashir, H., Amirzada, M. I., Sumrin, A., & Bin Asad, M. H. H. (2020). Preparation and nanoencapsulation of lectin from lepidium sativum on chitosan-tripolyphosphate nanoparticle and their cytotoxicity against hepatocellular carcinoma cells (HepG2). BioMed Research International, 2020. https://doi.org/10.1155/2020/7251346
Mendeley helps you to discover research relevant for your work.