Background: Bacterial wilt of tomato (BWP) caused by Ralstonia solanacearum (Smith) is a very important disease. Biological control of this disease is a very important tool to protect the plant and environment from pollution of chemical control. Results: Twenty isolates of genus, Pantoea were isolated from healthy tomato root. Out of 20 isolates, 2 strains, PHYTPO1 and PHYTPO2, showed highly antagonistic property to control the growth of R. solanacearum in vitro conditions. They were identified as P. agglomerans by using 16S rRNA nucleotide sequence analysis. The 2 isolates were selected to study their effect (as cell suspension or culture filtrate) on the bacterial wilt under greenhouse conditions. PHYTPO1 inhibited maximum growth reduction of R. solanacearum and formed 2.5 cm2 of inhibition zone, followed by 1.2 cm2 in PHYTOPO2 under in vitro conditions. Treating with both isolates of P. agglomerans was significantly reduced disease severity of tomato wilt disease. The disease severity was reduced to 74.1 when treated as cell suspension, while when treated as culture filtrate, it reduced the disease severity up to 69.4 than infected control. Conclusion: The strains of Pantoea can be used as an ecofriendly method to control of the most economic pathogen of tomato under greenhouse conditions. Further study is needed to find an appropriate formulation and approving application of these bacteria under field conditions.
CITATION STYLE
Abo-Elyousr, K. A. M., & Hassan, S. A. (2021). Biological control of Ralstonia solanacearum (Smith), the causal pathogen of bacterial wilt disease by using Pantoea spp. Egyptian Journal of Biological Pest Control, 31(1). https://doi.org/10.1186/s41938-021-00460-z
Mendeley helps you to discover research relevant for your work.