Chloride concentration ([Cl-]) was measured in defined organellar compartments using fluorescently labeled transferrin, α2-macroglobulin, and cholera toxin B-subunit conjugated with Cl--sensitive and -insensitive dyes. In pulse-chase experiments, [Cl-] in Tf-labeled early/recycling endosomes in J774 cells was 20 mM just after internalization, increasing to 41 mM over ∼10 min in parallel to a drop in pH from 6.91 to 6.05. The low [Cl-] just after internalization (compared with 137 mM solution [Cl-]) was prevented by reducing the interior-negative Donnan potential. [Cl-] in α2-macroglobulin-labeled endosomes, which enter a late compartment, increased from 28 to 58 mM at 1-45 min after internalization, whereas pH decreased from 6.85 to 5.20. Cl- accumulation was prevented by bafilomycin but restored by valinomycin. A Cl- channel inhibitor slowed endosomal acidification and Cl- accumulation by ∼2.5-fold. [Cl-] was 49 mM and pH was 6.42 in cholera toxin B subunit-labeled Golgi complex in Vero cells; Golgi compartment Cl- accumulation and acidification were reversed by bafilomycin. Our experiments provide evidence that Cl- is the principal counter ion accompanying endosomal and Golgi compartment acidification, and that an interior-negative Donnan potential is responsible for low endosomal [Cl-] early after internalization. We propose that reduced [Cl-] and volume in early endosomes permits endosomal acidification and [Cl-] accumulation without lysis.
CITATION STYLE
Sonawane, N. D., & Verkman, A. S. (2003). Determinants of [Cl-] in recycling and late endosomes and Golgi complex measured using fluorescent ligands. Journal of Cell Biology, 160(7), 1129–1138. https://doi.org/10.1083/jcb.200211098
Mendeley helps you to discover research relevant for your work.