Microbial diseases remain the most common cause of global mortality and morbidity. Scientific and technical achievements have dramatically improved the possibilities of investigating the humoral immune response against the whole proteome of microbial organisms. A number of genomes of microbial organisms responsible for diseases of worldwide medical importance such as Plasmodium, Toxoplasma, Mycobacterium, Streptococcus, Neisseria, Salmonella, Borrelia, and Rickettsia species have already been sequenced or will be available in the very near future. High-throughput assays such as protein microarrays have been clinically validated in serum for detecting the presence of antibodies directed against microbial antigens. Computational technologies for processing large sets of data are rapidly being developed. Such a powerful combination of genomic information and assays now offers the opportunity to identify the microbial antigens that, either alone or in combination, function as targets of natural acquired immunity against infectious diseases. This information will prove invaluable for developing vaccines against a series of microorganisms of medical relevance that are urgently needed, e.g., malaria. Additional applications of these technologies include the development of a microbial antigen array for the early serodiagnosis of both common and rare infectious diseases. This review will focus on technical and scientific issues concerning the use of antigen microarrays for vaccine development and the serodiagnosis of infectious diseases.
CITATION STYLE
Bacarese-Hamilton, T., Bistoni, F., & Crisanti, A. (2002, December 1). Protein microarrays: From serodiagnosis to whole proteome scale analysis of the immune response against pathogenic microorganisms. BioTechniques. Eaton Publishing Company. https://doi.org/10.2144/dec02-hamilton
Mendeley helps you to discover research relevant for your work.