A radar simulator for polarimetric radar variables, including reflectivities at horizontal and vertical polarizations, the differential reflectivity, and the specific differential phase, has been developed. This simulator serves as a test bed for developing and testing forward observation operators of polarimetric radar variables that are needed when directly assimilating these variables into storm-scale numerical weather prediction (NWP) models, using either variational or ensemble-based assimilation methods. The simulator takes as input the results of high-resolution NWP model simulations with ice microphysics and produces simulated polarimetric radar data that may also contain simulated errors. It is developed based on calculations of electromagnetic wave propagation and scattering at the S band of wavelength 10.7 cm in a hydrometeor-containing atmosphere. The T-matrix method is used for the scattering calculation of raindrops and the Rayleigh scattering approximation is applied to snow and hail particles. The polarimetric variables are expressed as functions of the hydrometeor mixing ratios as well as their corresponding drop size distribution parameters and densities. The presence of wet snow and wet hail in the melting layer is accounted for by using a new, relatively simple melting model that defines the water fraction in the melting snow or hail. The effect of varying density due to the melting snow or hail is also included. Vertical cross sections and profiles of the polarimetric variables for a simulated mature multicellular squall-line system and a supercell storm show that polarimetric signatures of the bright band in the stratiform region and those associated with deep convection are well captured by the simulator. © 2008 American Meteorological Society.
CITATION STYLE
Jung, Y., Zhang, G., & Xue, M. (2008). Assimilation of simulated polarimetric radar data for a convective storm using the ensemble kalman filter. Part I: Observation operations for reflectivity and polarimetric variables. Monthly Weather Review, 136(6), 2228–2245. https://doi.org/10.1175/2007MWR2083.1
Mendeley helps you to discover research relevant for your work.