Suppressing the CRISPR/Cas adaptive immune system in bacterial infections

27Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) coupled with CRISPR-associated (Cas) proteins (CRISPR/Cas) are the adaptive immune system of eubacteria and archaebacteria. This system provides protection of bacteria against invading foreign DNA, such as transposons, bacteriophages and plasmids. Three-stage processes in this system for immunity against foreign DNAs are defined as adaptation, expression and interference. Recent studies suggested a correlation between the interfering of the CRISPR/Cas locus, acquisition of antibiotic resistance and pathogenicity island. In this review article, we demonstrate and discuss the CRISPR/Cas system’s roles in interference with acquisition of antibiotic resistance and pathogenicity island in some eubacteria. Totally, these systems function as the adaptive immune system of bacteria against invading foreign DNA, blocking the acquisition of antibiotic resistance and virulence factor, detecting serotypes, indirect effects of CRISPR self-targeting, associating with physiological functions, associating with infections in humans at the transmission stage, interfering with natural transformation, a tool for genome editing in genome engineering, monitoring foodborne pathogens etc. These results showed that the CRISPR/Cas system might prevent the emergence of virulence both in vitro and in vivo. Moreover, this system was shown to be a strong selective pressure for the acquisition of antibiotic resistance and virulence factor in bacterial pathogens.

Cite

CITATION STYLE

APA

Gholizadeh, P., Aghazadeh, M., Asgharzadeh, M., & Kafil, H. S. (2017, November 1). Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. European Journal of Clinical Microbiology and Infectious Diseases. Springer Verlag. https://doi.org/10.1007/s10096-017-3036-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free