Amorphous silica as a food additive (E 551) is used in food materials (e.g., sweeteners, dairy products) for its anti-caking properties. The physicochemical properties of SiO2 also make it suitable to serve as a carrier of active substances in functional foods, dietary supplements, and drugs. Deficiency of niacinamide (vitamin B3, niacin) leads to several pathologies in the nervous system and causes one of the nutritional diseases called pellagra. The present study focuses on the use of hybrid ordered mesoporous silicas (SBA-15/SBA-16) functionalized with amino groups introduced through grafting or co-condensation with (N-vinylbenzyl)aminoethylaminopropyltrimethoxysilane (Z-6032) as novel carriers of niacinamide. They combine the characteristics of a relatively stable and chemically inert amorphous silica matrix with well-defined structural/textural parameters and organic functional groups that give specific chemical properties. The highest degree of carrier loading with niacinamide (16 wt.%) was recorded for the unmodified SBA-15. On the other hand, the highest degree of niacinamide release characterizes the functionalized SBA-15 sample (60% after 24 h), indicating that the presence of amino groups affects the release profile of niacinamide from the structure of the mesoporous silica.
CITATION STYLE
Wawrzyńczak, A., Nowak, I., & Feliczak-Guzik, A. (2023). SBA-15- and SBA-16-Functionalized Silicas as New Carriers of Niacinamide. International Journal of Molecular Sciences, 24(24). https://doi.org/10.3390/ijms242417567
Mendeley helps you to discover research relevant for your work.