Near-ground manoeuvres, such as landing, are key elements in unmanned aerial vehicle navigation. Traditionally, these manoeuvres have been done using external reference frames to measure or estimate the velocity and the height of the vehicle. Complex near-ground manoeuvres are performed by flying animals with ease. These animals perform these complex manoeuvres by exclusively using the information from their vision and vestibular system. In this paper, we use the Tau theory, a visual strategy that, is believed, is used by many animals to approach objects, as a solution for relative ground distance control for unmanned vehicles. In this paper, it is shown how this approach can be used to perform near-ground manoeuvres in a vertical and horizontal manner on a moving target without the knowledge of height and velocity of either the vehicle or the target. The proposed system is tested with simulations. Here, it is shown that, using the proposed methods, the vehicle is able to perform landing on a moving target, and also they enable the user to choose the dynamic characteristics of the approach.
CITATION STYLE
Armendariz, S., Becerra, V., & Bausch, N. (2019). Bio-inspired autonomous visual vertical and horizontal control of a quadrotor unmanned aerial vehicle. Electronics (Switzerland), 8(2). https://doi.org/10.3390/electronics8020184
Mendeley helps you to discover research relevant for your work.