A large class of optimal control problems for hybrid dynamic systems can be formulated as mixed‐integer optimal control problems (MIOCPs). A decomposition approach is suggested to solve a special subclass of MIOCPs with mixed integer inner point state constraints. It is the intrinsic combinatorial complexity of the discrete variables in addition to the high nonlinearity of the continuous optimal control problem that forms the challenges in the theoretical and numerical solution of MIOCPs.During the solution procedure the problem is decomposed at the inner time points into a multiphase problem with mixed integer boundary constraints and phase transitions at unknown switching points. Due to a discretization of the state space at the switching points the problem can be decoupled into a family of continuous optimal control problems (OCPs) and a problem similar to the asymmetric group traveling salesman problem (AGTSP).The OCPs are transcribed by direct collocation to large‐scale nonlinear programming problems, which are solved efficiently by an advanced SQP method. The results are used as weights for the edges of the graph of the corresponding TSP‐like problem, which is solved by a Branch‐and‐Cut‐and‐Price (BCP) algorithm.The proposed approach is applied to a hybrid optimal control benchmark problem for a motorized traveling salesman. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
CITATION STYLE
Glocker, M. (2004). A decomposition approach for optimal control problems with integer innerpoint state constraints. PAMM, 4(1), 608–609. https://doi.org/10.1002/pamm.200410285
Mendeley helps you to discover research relevant for your work.