Cyber Security Objectives and Requirements for Smart Grid

5Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

When we talk about smart grid we refer to the next generation of power systems that should and will replace existing power system grids through intelligent communication infrastructures, sensing technologies, advanced computing, smart meters, smart appliances, and renewable energy resources. Features of the smart grid must meet requirements as high efficiency, reliability, sustainability, flexibility, and market enabling. But, the growing dependency on information and communication technologies (ICT) with its applications and uses has led to new threats to discuss and to try to resist against them. On the one hand, the most important challenges for smart grid cyber security infrastructure are finding and designing optimum methods to secure communication networks between millions of inter-connected devices and entities throughout critical power facilities, especially by preventing attacks and defending against them with intelligent methods and systems in order to maintain our infrastructures resilient and without affecting their behavior and performances. On the other hand, another main challenge is to incorporate data security measures to the communication infrastructures and security protocols of the smart grid system keeping in mind the complexity of smart grid network and the specific cyber security threats and vulnerabilities. The basic concept of smart grid is to add control, monitoring, analysis, and the feature to communicate to the standard electrical system in order to reduce power consumption while achieving maximized throughput of the system. This technology, currently being developed around the world, will allow to use electricity as economically as possible for business and home user. The smart grid integrates various technical initiatives such as wide-area monitoring protection and control systems (WAMPAC) based on phasor measurement units (PMU), advanced metering infrastructure (AMI), demand response (DR), plug-in hybrid electric vehicles (PHEV), and large-scale renewable integration in the form of wind and solar generation. Therefore, this chapter is focused on two main ideas considering modern smart grid infrastructures. The first idea is focused on high-level security requirements and objectives for the smart grid, and the second idea is about innovative concepts and methods to secure these critical infrastructures. The main challenge in assuring the security of such infrastructures is to obtain a high level of resiliency (immunity from various types of attacks) and to maintain the performances of the protected system. This chapter is organized in seven parts as follows. The first part of this chapter is an introduction in smart grid related to how it was developed in the last decades and what are the issues of smart grid in terms of cyber security. The second part shows the architecture of a smart grid network with all its features and utilities. The third part refers to the cyber security area of smart grid network which involves challenges, requirements, features, and objectives to secure the smart grid. The fourth part of this chapter is about attacks performed against smart grid network that happens because the threats and vulnerabilities existing in the smart grid system. The fifth part refers to the methods and countermeasures used to avoid or to minimize effects of complex attacks. The sixth part of the chapter is dedicated to presenting an innovative methodology for security assessment based on vulnerability scanning and honeypots usage. The last part concludes the chapter and draws some goals for future research directions. The main purposes of this chapter are: to present smart grid network architecture with all its issues, complexities, and features, to explore known and future threats and vulnerabilities of smart grid technology, to show how a highly secured smart grid should look like and how this next generation of power system should act and recover against the increasing complexity of cyber-attacks.

Cite

CITATION STYLE

APA

Bîrleanu, F. G., Anghelescu, P., Bizon, N., & Pricop, E. (2019). Cyber Security Objectives and Requirements for Smart Grid. In Energy Systems in Electrical Engineering (Vol. Part F2127, pp. 607–634). Springer. https://doi.org/10.1007/978-981-13-1768-2_17

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free