An ensemble methods for medical insurance costs prediction task

21Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

The paper reports three new ensembles of supervised learning predictors for managing medical insurance costs. The open dataset is used for data analysis methods development. The usage of artificial intelligence in the management of financial risks will facilitate economic wear time and money and protect patients' health. Machine learning is associated with many expectations, but its quality is determined by choosing a good algorithm and the proper steps to plan, develop, and implement the model. The paper aims to develop three new ensembles for individual insurance costs prediction to provide high prediction accuracy. Pierson coefficient and Boruta algorithm are used for feature selection. The boosting, stacking, and bagging ensembles are built. A comparison with existing machine learning algorithms is given. Boosting modes based on regression tree and stochastic gradient descent is built. Bagged CART and Random Forest algorithms are proposed. The boosting and stacking ensembles shown better accuracy than bagging. The tuning parameters for boosting do not allow to decrease the RMSE too. So, bagging shows its weakness in generalizing the prediction. The stacking is developed using K Nearest Neighbors (KNN), Support Vector Machine (SVM), Regression Tree, Linear Regression, Stochastic Gradient Boosting. The random forest (RF) algorithm is used to combine the predictions. One hundred trees are built for RF. Root Mean Square Error (RMSE) has lifted the to 3173.213 in comparison with other predictors. The quality of the developed ensemble for Root Mean Squared Error metric is 1.47 better than for the best weak predictor (SVR).

Cite

CITATION STYLE

APA

Shakhovska, N., Melnykova, N., Chopiyak, V., & Gregus Ml, M. (2022). An ensemble methods for medical insurance costs prediction task. Computers, Materials and Continua, 70(2), 3969–3984. https://doi.org/10.32604/cmc.2022.019882

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free