Osteoclasts: What do they do and how do they do it?

577Citations
Citations of this article
452Readers
Mendeley users who have this article in their library.

Your institution provides access to this article.

Abstract

As Americans live longer, degenerative skeletal diseases, such as osteoporosis, become increasingly prevalent. Regardless of cause, osteoporosis reflects a relative enhancement of osteoclast activity. Thus, this unique bone resorptive cell is a prominent therapeutic target. A number of key observations provide insights into the mechanisms by which precursors commit to the osteoclast phenotype and how the mature cell degrades bone. The osteoclast is a member of the monocyte/macrophage family that differentiates under the aegis of two critical cytokines, namely RANK ligand and M-CSF. Tumor necrosis factor (TNF)-α also promotes osteoclastogenesis, particularly in states of inflammatory osteolysis such as that attending rheumatoid arthritis. Once differentiated, the osteoclast forms an intimate relationship with the bone surface via the αvβ3 integrin, which transmits matrix-derived, cytoskeleton-organizing, signals. These integrin-transmitted signals include activation of the associated proteins, c-src, syk, Vav3, and Rho GTPases. The organized cytoskeleton generates an isolated microenvironment between the cell's plasma membrane and the bone surface in which matrix mineral is mobilized by the acidic milieu and organic matrix is degraded by the lysosomal protease, cathepsin K. This review focuses on these and other molecules that mediate osteoclast differentiation or function and thus serve as candidate anti-osteoporosis therapeutic targets. Copyright © American Society for Investigative Pathology.

Cite

CITATION STYLE

APA

Teitelbaum, S. L. (2007). Osteoclasts: What do they do and how do they do it? In American Journal of Pathology (Vol. 170, pp. 427–435). American Society for Investigative Pathology Inc. https://doi.org/10.2353/ajpath.2007.060834

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free