Abstract
Material classification is similar to texture classification and consists in predicting the material class of a surface in a color image, such as wood, metal, water, wool, or ceramic. It is very challenging because of the intra-class variability. Indeed, the visual appearance of a material is very sensitive to the acquisition conditions such as viewpoint or lighting conditions. Recent studies show that deep convolutional neural networks (CNNs) clearly outperform hand-crafted features in this context but suffer from a lack of data for training the models. In this paper, we propose two contributions to cope with this problem. First, we provide a new material dataset with a large range of acquisition conditions so that CNNs trained on these data can provide features that can adapt to the diverse appearances of the material samples encountered in real-world. Second, we leverage recent advances in multi-view learning methods to propose an original architecture designed to extract and combine features from several views of a single sample. We show that such multi-view CNNs significantly improve the performance of the classical alternatives for material classification.
Author supplied keywords
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
