Curcumin Inhibits Experimental Allergic Encephalomyelitis by Blocking IL-12 Signaling Through Janus Kinase-STAT Pathway in T Lymphocytes

  • Natarajan C
  • Bright J
273Citations
Citations of this article
127Readers
Mendeley users who have this article in their library.

Abstract

Experimental allergic encephalomyelitis (EAE) is a CD4+ Th1 cell-mediated inflammatory demyelinating autoimmune disease of the CNS that serves as an animal model for multiple sclerosis (MS). IL-12 is a proinflammatory cytokine that plays a crucial role in the induction of neural Ag-specific Th1 differentiation and pathogenesis of CNS demyelination in EAE and MS. Curcumin (1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a naturally occurring polyphenolic phytochemical isolated from the rhizome of the medicinal plant Curcuma longa. It has profound anti-inflammatory activity and been traditionally used to treat inflammatory disorders. In this study we have examined the effect and mechanism of action of curcumin on the pathogenesis of CNS demyelination in EAE. In vivo treatment of SJL/J mice with curcumin significantly reduced the duration and clinical severity of active immunization and adoptive transfer EAE. Curcumin inhibited EAE in association with a decrease in IL-12 production from macrophage/microglial cells and differentiation of neural Ag-specific Th1 cells. In vitro treatment of activated T cells with curcumin inhibited IL-12-induced tyrosine phosphorylation of Janus kinase 2, tyrosine kinase 2, and STAT3 and STAT4 transcription factors. The inhibition of Janus kinase-STAT pathway by curcumin resulted in a decrease in IL-12-induced T cell proliferation and Th1 differentiation. These findings highlight the fact that curcumin inhibits EAE by blocking IL-12 signaling in T cells and suggest its use in the treatment of MS and other Th1 cell-mediated inflammatory diseases.

Cite

CITATION STYLE

APA

Natarajan, C., & Bright, J. J. (2002). Curcumin Inhibits Experimental Allergic Encephalomyelitis by Blocking IL-12 Signaling Through Janus Kinase-STAT Pathway in T Lymphocytes. The Journal of Immunology, 168(12), 6506–6513. https://doi.org/10.4049/jimmunol.168.12.6506

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free