In recent years, information-centric networks (ICNs) have gained attention from the research and industry communities as an efficient and reliable content distribution network paradigm, especially to address content-centric and bandwidth-needed applications together with the heterogeneous requirements of emergent networks, such as the Internet of Things (IoT), Vehicular Ad-hoc NETwork (VANET) and Mobile Edge Computing (MEC). In-network caching is an essential part of ICN architecture design, and the performance of the overall network relies on caching policy efficiency. Therefore, a large number of cache replacement strategies have been proposed to suit the needs of different networks. The literature extensively presents studies on the performance of the replacement schemes in different contexts. The evaluations may present different variations of context characteristics leading to different impacts on the performance of the policies or different results of most suitable policies. Conversely, there is a lack of research efforts to understand how the context characteristics influence policy performance. In this direction, we conducted an extensive study of the ICN literature through a Systematic Literature Review (SLR) process to map reported evidence of different aspects of context regarding the cache replacement schemes. Our main findings contribute to the understanding of what is a context from the perspective of cache replacement policies and the context characteristics that influence cache behavior. We also provide a helpful classification of policies based on context dimensions used to determine the relevance of contents. Further, we contribute with a set of cache-enabled networks and their respective context characteristics that enhance the cache eviction process.
CITATION STYLE
Pires, S., Ziviani, A., & Sampaio, L. N. (2021). Contextual dimensions for cache replacement schemes in informationcentric networks: a systematic review. PeerJ Computer Science, 7, 1–51. https://doi.org/10.7717/peerj-cs.418
Mendeley helps you to discover research relevant for your work.