The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultane...
CITATION STYLE
Roussel, N., Sprenger, J., Tappan, S. J., & Glaser, J. R. (2014). Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends. Worm, 3(4), e982437. https://doi.org/10.4161/21624054.2014.982437
Mendeley helps you to discover research relevant for your work.