Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, a computation-efficient parameter estimation scheme for high-resolution global tide models is developed. The method is applied to Global Tide and Surge Model with an unstructured grid with a resolution of about 2.5 km in the coastal area and about 4.9 million cells. The estimation algorithm uses an iterative least squares method, known as DUD. We use time-series derived from the FES2014 tidal database in deep water as observations to estimate corrections to the bathymetry. Although the model and estimation algorithm run in parallel, directly applying of DUD would not be affordable computationally. To reduce the computational demand, a coarse-to-fine strategy is proposed by using output from a coarser model to replace the fine model. There are two approaches; One is completely replacing the fine model with a coarser model during calibration (Coarse Calibration) and the second is Coarse Incremental Calibration, that replaces the output increments between the initial model and model with modified parameters by coarser grid model simulations. To further reduce the computation time, the parameter dimension is reduced from O(106) to O(102) based on sensitivity analysis, which greatly reduces the required number of model simulations and storage. In combination, these methods form an efficient optimization strategy. Experiments show that the accuracy of the tidal representation can be improved significantly at affordable cost. Validation for other time-periods and using coastal tide-gauges shows that the accuracy is improved significantly. However, the calibration period of two weeks is short and leads to some over-fitting of the model.

Cite

CITATION STYLE

APA

Wang, X., Verlaan, M., Apecechea, M. I., & Lin, H. X. (2021). Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model. Journal of Geophysical Research: Oceans, 126(3). https://doi.org/10.1029/2020JC016917

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free