Modifications of titin contribute to the progression of cardiomyopathy and represent a therapeutic target for treatment of heart failure

19Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.

Cite

CITATION STYLE

APA

Tharp, C., Mestroni, L., & Taylor, M. (2020, September 1). Modifications of titin contribute to the progression of cardiomyopathy and represent a therapeutic target for treatment of heart failure. Journal of Clinical Medicine. MDPI. https://doi.org/10.3390/jcm9092770

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free