Identify shifts of word semantics through Bayesian surprise

2Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Much work has been done recently on learning word embeddings from large corpora, which attempts to find the coordinates of words in a static and high dimensional semantic space. In reality, such corpora often span a sufficiently long time period, during which the meanings of many words may have changed. The co-evolution of word meanings may also result in a distortion of the semantic space, making these static embeddings unable to accurately represent the dynamics of semantics. In this paper, we present a novel computational method to capture such changes and to model the evolution of word semantics. Distinct from existing approaches that learn word embeddings independently from time periods and then align them, our method explicitly establishes the stable topological structure of word semantics and identifies the surprising changes in the semantic space over time through a principled statistical method. Empirical experiments on large-scale real-world corpora demonstrate the effectiveness of the proposed approach, which outperforms the state-of-the-art by a large margin.

References Powered by Scopus

DeepWalk: Online learning of social representations

8589Citations
N/AReaders
Get full text

A Neural Probabilistic Language Model

5166Citations
N/AReaders
Get full text

LINE: Large-scale information network embedding

4767Citations
N/AReaders
Get full text

Cited by Powered by Scopus

An analysis of the change in discussions on social media with bitcoin price

10Citations
N/AReaders
Get full text

MSC<sup>+</sup>: Language pattern learning for word sense induction and disambiguation

4Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Wu, Z., Li, C., Zhao, Z., Wu, F., & Mei, Q. (2018). Identify shifts of word semantics through Bayesian surprise. In 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018 (pp. 825–834). Association for Computing Machinery, Inc. https://doi.org/10.1145/3209978.3210040

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

81%

Researcher 3

19%

Readers' Discipline

Tooltip

Computer Science 13

72%

Psychology 3

17%

Engineering 1

6%

Medicine and Dentistry 1

6%

Save time finding and organizing research with Mendeley

Sign up for free