In order to reduce the thermal conductivity of CoSbS, a newly developed thermoelectric semiconductor, we have aimed at intentionally induce atomic disorder in its structure. This endeavor was guided by Density Functional Theory (DFT) calculations which indicated that substituting sulfur with selenium might be easily achievable experimentally because of the low formation energy of this point defect. Thereby, CoSbS1-xSex compounds having 0 ≤x ≤1 have been synthesized by solid state reaction. Besides the expected semiconducting paracostibite phase, we have observed the appearance of a semimetallic costibite phase, never reported experimentally before. This cross-fertilized theoretical and experimental approach allowed us to reduce by 50% the thermal conductivity of paracostibite and therefore reach a maximum zT of 0.62 at 730 K. This makes this entirely new CoSbS1-xSex alloy very attractive for further optimizations and potential usage in thermoelectric applications.
CITATION STYLE
Chmielowski, R., Bhattacharya, S., Jacob, S., Péré, D., Jacob, A., Moriya, K., … Dennler, G. (2017). Strong reduction of thermal conductivity and enhanced thermoelectric properties in cosbs1-xsex paracostibite. Scientific Reports, 7(1). https://doi.org/10.1038/srep46630
Mendeley helps you to discover research relevant for your work.