The manifestation of skyrmions in the Mott-insulator Cu2OSeO3 originates from a delicate balance between magnetic and electronic energy scales. As a result of these intertwined couplings, the two symmetry-inequivalent magnetic ions, Cu-I and Cu-II, bond into a spin S = 1 entangled tetrahedron. However, conceptualizing the unconventional properties of this material and the energy of the competing interactions is a challenging task due to the complexity of this system. Here we combine X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering to uncover the electronic and magnetic excitations of Cu2OSeO3 with site-specificity. We quantify the energies of the 3d crystal-field splitting for both Cu-I and Cu-II, fundamental for optimizing model Hamiltonians. Additionally, we unveil a site-specific magnetic mode, indicating that individual spin character is preserved within the entangled-tetrahedron picture. Our results thus provide experimental constraints for validating theories that describe the interactions of Cu2OSeO3, highlighting the site-selective capabilities of resonant spectroscopies.
CITATION STYLE
Gu, Y., Wang, Y., Lin, J., Pelliciari, J., Li, J., Han, M. G., … Bisogni, V. (2022). Site-specific electronic and magnetic excitations of the skyrmion material Cu2OSeO3. Communications Physics, 5(1). https://doi.org/10.1038/s42005-022-00934-y
Mendeley helps you to discover research relevant for your work.