With the rise of IOT devices and the systems connected to the internet, there is, accordingly, an ever-increasing number of network attacks (e.g. in DOS, DDOS attacks). A very significant research problem related to identifying Wireless Sensor Networks (WSN) attacks and the analysis of the sensor data is the detection of the relevant anomalies. In this paper, we propose a framework for intrusion detection system in WSN. The first two levels are located inside the WSN, one of them is between sensor nodes and the second is between the cluster heads. While the third level located on the cloud, and represented by the base stations. In the first level, which we called light mode, we simulated an intrusion traffic by generating data packets based on TCPDUMP data, which contain intrusion packets, our work, is done by using WSN technology. We used OPNET simulation for generating the traffic because it allows us to collect intrusion detection data in order to measure the network performance and efficiency of the simulated network scenarios. Finally, we report the experimental results by mimicking a Denial-of-Service (DOS) attack.
CITATION STYLE
Ibrahim, D. M., & Alruhaily, N. M. (2020). Anomaly detection in wireless sensor networks: A proposed framework. International Journal of Interactive Mobile Technologies, 14(10), 150–158. https://doi.org/10.3991/ijim.v14i10.14261
Mendeley helps you to discover research relevant for your work.