Optimal Management Strategies to Maximize Carbon Capture in Forest Plantations: A Case Study with Pinus radiata D. Don

7Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Plantations with fast-growing species play a crucial role in reducing global warming and have great carbon capture potential. Therefore, determining optimal management strategies is a challenge in the management of forest plantations to achieve the maximum carbon capture rate. The objective of this work is to determine optimal rotation strategies that maximize carbon capture in forest plantations. By evaluating an ecological optimal control problem, this work presents a method that manages forest plantations by planning activities such as reforestation, felling, thinning, and fire prevention. The mathematical model is governed by three ordinary differential equations: live biomass, intrinsic growth, and burned area. The characterization of the optimal control problem using Pontryagin’s maximum principle is analyzed. The model solutions are approximated numerically by the fourth-order Runge–Kutta method. To verify the efficiency of the model, parameters for three scenarios were considered: a realistic one that represents current forestry activities based on previous studies for the exotic species Pinus radiata D. Don, another pessimistic, which considers significant losses in forest productivity; and a more optimistic scenario which assumes the creation of new forest areas that contribute with carbon capture to prevent the increase in global temperature. The model predicts a higher volume of biomass for the optimistic scenario, with the consequent higher carbon capture than in the other two scenarios. The optimal solution for the felling strategy suggests that, to increase carbon capture, the rotation age should be prolonged and the felling rate decreased. The model also confirms that reforestation should be carried out immediately after felling, applying maximum reforestation effort in the optimistic and pessimistic scenarios. On the other hand, the model indicates that the maximum prevention effort should be applied during the life cycle of the plantation, which should be proportional to the biomass volume. Finally, the optimal solution for the thinning strategy indicates that in all three scenarios, the maximum thinning effort should be applied until the time when the fire prevention strategy begins.

References Powered by Scopus

Carbon pools and flux of global forest ecosystems

2994Citations
N/AReaders
Get full text

Global patterns of terrestrial nitrogen and phosphorus limitation

854Citations
N/AReaders
Get full text

Restoring natural forests is the best way to remove atmospheric carbon

583Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research

53Citations
N/AReaders
Get full text

A scoping review of the health co-benefits of climate mitigation strategies in South America

9Citations
N/AReaders
Get full text

MITIGATION OF CLIMATE CHANGE DUE TO EXCESSIVE CARBON DIOXIDE EMISSION AND ACCUMULATION: A MATHEMATICAL MODEL APPROACH

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Altamirano-Fernández, A., Rojas-Palma, A., & Espinoza-Meza, S. (2023). Optimal Management Strategies to Maximize Carbon Capture in Forest Plantations: A Case Study with Pinus radiata D. Don. Forests, 14(1). https://doi.org/10.3390/f14010082

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

38%

Lecturer / Post doc 2

25%

Researcher 2

25%

Professor / Associate Prof. 1

13%

Readers' Discipline

Tooltip

Environmental Science 3

43%

Agricultural and Biological Sciences 2

29%

Energy 1

14%

Chemistry 1

14%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1
Social Media
Shares, Likes & Comments: 1

Save time finding and organizing research with Mendeley

Sign up for free