Correcting temperature-sensitive protein folding defects

163Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

Recently, we found that different low molecular weight compounds, all known to stabilize proteins in their native conformation, are effective in correcting the temperature-sensitive protein folding defect associated with the ΔF508 cystic fibrosis transmembrane regulator (CFTR) protein. Here we examined whether the folding of other proteins which exhibit temperature- sensitive folding defects also could be corrected via a similar strategy. Cell lines expressing temperature-sensitive mutants of the tumor suppressor protein p53, the viral oncogene protein pp60(src), or a ubiquitin activating enzyme E1, were incubated at the nonpermissive temperature (39.5°C) in the presence of glycerol, trimethylamine N-oxide or deuterated water. In each case, the cells exhibited phenotypes similar to those observed when the cells were incubated at the permissive temperature (32.5°C), indicative that the particular protein folding defect had been corrected. These observations, coupled with our earlier work and much older studies in yeast and bacteria, indicate that protein stabilizing agents are effective in vivo for correcting protein folding abnormalities. We suggest that this type of approach may prove to be useful for correcting certain protein folding abnormalities associated with human diseases.

Cite

CITATION STYLE

APA

Brown, C. R., Hong-Brown, L. Q., & Welch, W. J. (1997). Correcting temperature-sensitive protein folding defects. Journal of Clinical Investigation, 99(6), 1432–1444. https://doi.org/10.1172/JCI119302

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free