Multiscale structured germanium nanoripples as templates for bioactive surfaces

11Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Nanostructured germanium substrates are produced by gold ion implantation; they show periodic ripples of nanometer size, decorated on the top and partially on one side with a forest of curled nanowires that end with gold-rich nanoparticles. For the first time, through a novel two-step soft lithography transfer process, the multi-scale nanopatterns are replicated, with features well below 100 nm, on biocompatible 2-norbornene ethylene cyclic olefin copolymer substrates. Given the suitable aspect ratio of the nanoripples and the peculiarity of their multiscale structure, the final substrates are available for cell-material interaction studies that can shed light on the role of the hierarchy of nanostructured materials in controlling the large-scale cellular behavior on biocompatible scaffolds. This work also presents an original combination of numerical analyses of scanning force microscopy images, which allows an accurate quantitative description of the outputs of the two-step transfer process.

Cite

CITATION STYLE

APA

Dell’Anna, R., Masciullo, C., Iacob, E., Barozzi, M., Giubertoni, D., Böttger, R., … Pepponi, G. (2017). Multiscale structured germanium nanoripples as templates for bioactive surfaces. RSC Advances, 7(15), 9024–9030. https://doi.org/10.1039/c6ra28531g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free