A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris-SDS extracted proteins from suspension cells of pearl millet revealed a range of PM-HRGP polypeptides having a glycan epitope, which reacted with JIM 20. A high molecular mass band, probably an HRGP aggregate or polymer, and a few low molecular mass polypeptides were recognized by JIM 20 during Western blot analysis. Treatment of pearl millet suspension cells with hydrogen peroxide in the presence of an endogenous peroxidase resulted in insolubilization of HRGP polypeptides with molecular weights between 45 and 33 kDa. To investigate the gene coding for an extensin type of HRGP, a fosmid-based genomic library of pearl millet having a fourfold genome coverage was constructed. A partial sequence of 378 bp of an HRGP gene was obtained by PCR amplification of pearl millet DNA with a primer pair designed from the conserved regions of monocotyledon extensin type of HRGPs. Screening the genomic library using the homologous probe developed from the 378-bp PCR product resulted in the isolation of five fosmid clones. Restriction mapping of these fosmids resulted in an 11. 8-kb region around an HRGP gene in pearl millet. The newly characterized gene, PM-HRGP, had all the characteristic features of a monocotyledon extensin type of HRGP. An intron at the 3′ untranslated region of the gene was identified by cDNA cloning. Differential expression of the PM-HRGP gene was observed during compatible and incompatible interactions of pearl millet with the downy mildew pathogen Sclerospora graminicola (Sacc) Schroet. Induced expression of the gene was observed only in case of an incompatible interaction. © 2011 The Author(s).
CITATION STYLE
Sujeeth, N., Kini, R. K., Shailasree, S., Wallaart, E., Shetty, S. H., & Hille, J. (2012). Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola. Acta Physiologiae Plantarum, 34(2), 779–791. https://doi.org/10.1007/s11738-011-0879-5
Mendeley helps you to discover research relevant for your work.